Cepstral normalisation and the signal to noise ratio spectrum in automatic speech recognition
نویسنده
چکیده
Cepstral normalisation in automatic speech recognition is investigated in the context of robustness to additive noise. In this paper, it is argued that such normalisation leads naturally to a speech feature based on signal to noise ratio rather than absolute energy (or power). Explicit calculation of this SNR-cepstrum by means of a noise estimate is shown to have theoretical and practical advantages over the usual (energy based) cepstrum. The relationship between the SNR-cepstrum and the articulation index, known in psycho-acoustics, is discussed. Experiments are presented suggesting that the combination of the SNR-cepstrum with the well known perceptual linear prediction method can be beneficial in noisy environments.
منابع مشابه
Improving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملروشی جدید در بازشناسی مقاوم گفتار مبتنی بر دادگان مفقود با استفاده از شبکه عصبی دوسویه
Performance of speech recognition systems is greatly reduced when speech corrupted by noise. One common method for robust speech recognition systems is missing feature methods. In this way, the components in time - frequency representation of signal (Spectrogram) that present low signal to noise ratio (SNR), are tagged as missing and deleted then replaced by remained components and statistical ...
متن کاملSpeech Enhancement in No Environme
This paper presents a speech enhancement using a noise estimation based on the ratio of the noisy speech and its minimum (NSMR) for non-stationary noise environments. The noise estimator is a very simple but highly effective real time approach for single channel noise reduction. The enhanced speech is free of musical tones and reverberation artifacts and sounds very natural compared to methods ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Speech Communication
دوره 53 شماره
صفحات -
تاریخ انتشار 2011